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A numerical study is made of the gauge-field model of magnetic confinement. The nonlinear differential

equations describing a flux tube are solved by a relaxation method. Particular attention is paid to the

boundary conditions at the center of the flux tube. We also study numerically the 't Hooft monopole and a
flux tube of finite length, i.e., a quark-antiquark pair a finite distance apart.

I. INTRODUCTION

There is much current speculation aimed at de-
vising a mechanism for quark confinement. Two
general classes of models are studied, "electric"
confinement and "magnetic" confinement, both
based on gauge-field theories of a quark-gluon
interaction. Although the electric confinement
mechanism' ' is perhaps a Priori the more plausi-
ble of the two, it is much more difficult to make it
work, and at present this possibility is speculative.
On the other hand, the magnetic confinement mech-
anism -" does work, although one may be reluctant
to accept the many assumptions made at the out-
set.

In the magnetic confinement models the quarks
are endowed with a "magnetic" monopole moment,
albeit in a color space or other space different
from the flavor space which contains the usual
electric and magnetic charges. There is also as-
sumed a Higgs field which undergoes a spontane-
ous symmetry breakdown to provide the gauge bo-
sons with a mass. The Higgs field has the usual
type of electric coupling to the gauge field, i.e. ,
there are no magnetic monopoles in the Higgs
field. The magnetic flux produced by the quark
magnetic monopoles is thus shielded by the Higgs
field by a mechanism strictly analogous to the
Meissner effect in a superconductor. The mag-
netic field produced by a quark monopole is chan-
neled into a flux tube; a quark-antiquark pair is
connected by such a flux tube. For appreciable
separations of the quark-antiquark pair the energy
of this flux tube is proportional to its length, and
this is the desired confinement potential.

In the electric confinement models it is hoped
that something similar happens: that the electric
Qux is confined to a flux tube by the infrared di-
vergences and/or the nonlinear interactions of the
gauge-field theory. We will have nothing more to
say about electric confinement in the present pa-

per.
The flux-tube mechanism of magnetic confine-

ment was invented by ¹ielsen and Olesen, '
Nambu, ' and Parisi, ' and has been developed in
subsequent papers by 't Hooft, ' Polyakov, ' Mandel-
tarn 9 Eguchi. '0 Ezawa and Tze,"Corrigan et al

and many others. For the most part these papers
deal with solutions of the field equations inter-
preted as classical c-number equations. An ana-
lytical approximation scheme has been given by
Patkos. ' Much of the work is a direct carry-
over from developments in the theory of super-
conductivity. '4

In the present paper we attempt to clarify and
illustrate the model by giving some numerical
solutions for the classical field equations. The
theory is reviewed and numerical results for the
Abelian version of the model are given in Sec. II
for the case of an infinitely long flux tube, i.e. ,
the vortex tube of Nielsen and Olesen. 4 In Sec. III
the numerical methods used in Sec. II are applied
to the 't Hooft magnetic monopole'; the equations
describing this non-Abelian soliton are rather
similar to those studied in the preceding section.
In Sec. IV we discuss briefly some attempts to
carry out the numerical work for a flux tube of
finite length, i.e., a quark- antiquark pair a finite
distance apart.

The equations to be solved in this work are non-
linear differential equations with boundary condi-
tions given at both x= 0 and x= ~. They are solved
by the relaxation method of Henyey, Wilets, Bohm,
LeLevier, and Levee, "which is widely employed
by astrophysicists for solving the differential
equations describing stellar structure. " This
method would appear to be generally useful for
obtaining numerically soliton-type solutions of
classical nonlinear field equations. We devote an
appendix to a brief discussion of the method and
the experience we have with it for the problems
discussed in this paper. The method has been
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used by Nohl" to solve a problem similar to those
discussed here.

II. ABELIAN MODEL

We treat the magnetic monopole quarks as ex-
ternal sources and account for them through
boundary consitions on the gauge fields and Higgs
field. For the Abelian model the Lagrangian for
the gauge field A, coupled to the scalar Higgs field
4 is

d2A 1 dA 1, nz
2+ ————,A = 2e' A ——g',

dp p dp p2 8p

d2$ Id/ m 2

dp2 p cfp qp
+ — = e' A ——g —p. '(I)+ xg'.

(2.13)

(2.14)

If the only sources are magnetic monopoles of op-
posite sign at z = + ~, A and g are independent of
~, and we have the vortex tube of Nielsen and
Olesen. For this case the coupled differential
equations are ordinary differential equations:

g = —~E ' — —ieA 4 + ieA 4'*
pv —

Bx I Bx

+~ R@s2211 LAy(1I/s(s)I()2 (2.1)

In addition to (2.13) and (2.14) we need boundary
conditions. For the vortex tube the appropriate
conditions are

with

BA„ BA„
pv Bx BxV

This leads to field equations

(2.2)

p p() .
q (p 2/y)2/2

A-m/ep,

(2.15)

(2.16)

(2.17)

(2.18)
QP gg Q g Q 2~2A

Bxp Bx Bx (2.3)

(
2

ieA„4 = p. 'q + X(4*%)4'. (2.4)

For a time-independent magnetic solution, take
A, = 0 and A, (i = 1, 2, 3) and )I independent of time.
W'1th

B=curlX (2.5)

the field equations (2.3) and (2.4) become

curl B= -ie[21(*V%- (V4'*)21(]- 2e'AAI *21 (2.6)

(V'- 2ieA V' —e'A')21( = -g'4 + X(4*@)4, (2.7)

yrovided the gauge is chosen so that

divA= 0. (2 8)

For one or more magnetic monopoles along the
z axis, take

A= jA(p, z), (2.9)

B'A B2A 1 BA 1 2 m,+,+— ——,A=2e' A ——g',B~2 Bp2 p Bp p2 ep

8$ 8$ 18$ m,+,+-—= e'(i) A — p, '(I) + Ag'.
Bz Bp p Bp ep

(2.11)

(2.12)

)lf = e'~~/(p, z), m = integer, (2.10)
A

where (t) is a unit vector in the P direction, p, P,
z are the usual cylindrical coordinates, and g(p, z)
is a real function. With these assumptions (2.8) is
satisfied and the field equations (2.6) and (2.7) re-
duce to

d'g 1 d(t) m2
+— ——/=0.

dp p dp p2 (2.20)

This has solutions p™.Eliminating the singular
solution leads to the boundary condition (2.17).
The leading terms in (2.13) at small p are then

d'A 1 dA 1A
dp p dp p2 (2.21)

with solutions p". The condition that A be less
singular than p

' then leads to the boundary condi-
tion (2.18).

The integer m is the number of flux quanta in
the flux tube. According to (2.19) for p -~ and
(2.16) we find for the total flux

with ~ and 5 unlmown constant. In (2.15) we as-
sume for p - the usual symmetry-breakdown
value for the Higgs field. If this value is substi-
tuted on the right of Eq. (2.13) we obtain a form
of Bessel's equation for A, =A —m/ep. [Note that
m/ep is a pure gauge field and reduces the left
side of (2.13) to zero. ] One solution of the Bessel
equation grows exponentially with p and is re-
jected. The other decays exponentially, leading to
the boundary condition (2.16).

To obtain the boundary conditions (2.17) and
(2.18) at p -0, first note that the flux through a
circle of radius p centered on the flux tube is given
by

S(p)= . sss)A ps=[A P1=2spA(p). (2.12)

If we assume that C (p) —0 as p -0, thus for ex-
amyle eliminating a Dirac string at p = 0, we see
that A(p) is less singular than p ' at p -0. The
leading terms in (2.14) for small p are then
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2g1m

e (2.22)
The field equations (2.13) and (2.14) in terms of
dimensionless variables become (dropping primes)

eg= 2@m. (2.23)

In terms of the magnetic monopole moment g of
the monopoles at the end of the Qux tube, the total
flux is 4 =g (in rationalized units), so we have the
Dirac quantization condition

——,A=tP (A
——),

d'g 1' m'
dp p dp p

=C &-— --'G(~-~'),

with boundary conditions

(2.33)

(2.34)

The energy per unit length of the flux tube rela-
tive to the Higgs vacuum is given by

—=2v I Pdp
i

+e'rP A ——I gp Sp& ep

p ~'e' $ 1, A~ttl/p ~

p-0: g-ap", A-bp,
(2.35)

(2.36)

and the energy per unit length (2.25) becomes

1 1 8+- — (p&)
2 p8p

—p, 'g'+ —,'A, P'+-
2K

(2.24)

Eliminating the derivatives in this expression by
integrating by parts and using the field equations
(2.13) and (2.14), we find

m 2

i=~--," f(G),

f(G) =B(0)+C,

~ 00
m 2

C= ' PdP y' ~ +~G(1 y4)
~p P

(2.37)

(2.38)

—=-B(0)+2gL e kp
p~p .*y*(~ —)'

B(p) =- —(p&).
1 d
p dp

(2.39)

(2.25)

where the magnetic field is given by

B(p) = (p&-)—1 d
p dp

(2.26)

For numerical purposes it is convenient to intro-
duce dimensionless variables. The masses of the
scalar and vector mesons after the spontaneous
symmetry breakdown are

Some numerical results for the equations
(2.33)-(2.39) for the case m = 1 (one unit of flux)
are presented in Figs. 1, 2, and 3. These results
were obtained with the relaxation method discussed
in the Appendix. Figure 1 presents B(p) as a
function of p for various values of G, ranging from
weak coupling (G= 0.1) to strong coupling (G
=100.0). Corresponding results for the Higgs

2.0

(2p 2)l/2 (2.27)

(2.28)

1.8

1.6

1.4

Introduce a dimensionless length p',
/

1p=--- p I
mF

(2.29).

1.2
CO

cuo1 0
0)

0.8
and dimensionless scalar and vector fields g', &', 0.6

(2.30)

A = ~A'.
e (2.31)

m ~

e2 (2.32)

In terms of these variables there is a dimension-
less coupling constant

0.4

0.2
I

0.5
I

1.0
fTly P

I

1.5 2.0

FIG. 1. The magnetic field $(p) as a function of radius
in the Abelian model with m =1 (1 unit of flux) for sev-
eral values of the coupling parameter G =X/e . mz
=2@ p /X
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l.o—

0.9

varying functions of G.
We can attempt to attach some physical signifi-

cance to these numerical values by comparison
with yhenomenological potentials used in recent
studies of charmonium spectroscopy. Eichten
et al. ' use a potential

0.8

0.7

~~cu 0 s

&05
0.4

(2.40)

and find that the values a, =0.2, a=0.2 fm, fit the
data. The Coulomb potential part of (2.40) deter-
mines the monopole strength g and hence the gauge
coupling constant by (2.23):

0.5 4g e2 4g (2.41)

0.2

O. l

The linear term in the potential (2.40) is the energy
per unit length we have calculated, (2.37) and
(2.38):

0.5 I.O 1.5 2.0

FIG. 2. The Higgs field g(p) as a function of radius
in the Abelian model with m =1 (1 unit of flux) for sev-
eral values of the coupling parameter 6 =A, /e . rpg&2

= 2e2p'/X.

field g(p) are presented in Fig. 2. For strong
coupling g maintains its asymptotic value outside
of a narrow core. This is the basis of an approxi-
mation technique in which g is replaced by its
asymptotic value in Eq. (2.13)—see for example
Ref. 13. In Fig. 3 we give &(0), the magnetic field
at the center of the flux tube, as a function of the
coupling parameter G. Also plotted in Fig. 3 is
the quantity f(G) = B(0)+C, which is direct]y pro
portional to the energy per unit length of the flux
tube. We see that these quantities are very slowly

2.4

~ Z.O
LLJ

cu» l.6
E

10e'
' f(G)

(2.42)

With e given by (2.41), the vector-meson mass is
given by (2.42). The parameter G is not fixed by
these considerations, but f(G) is a slowly varying
function. Using the value (2.41) for e and the curve
in Fig. 3, we calculated the scalar Higgs meson
and vector-meson masses for typical values of G,
as given in Table I.

III. THE 't HOOFT MONOPOLE

The numerical technique employed in Sec. II to
solve the nonlinear coupled differential equations
with boundary conditions at p = 0 and p = ~ describ-
ing the Nielsen-Olesen vortex is a generally use-
ful technique for calculating numerically soliton
solutions of nonlinear classical field equations.
In this section we discuss the 't Hooft monopole, '
which is described by nonlinear coupled differen-
tial equations similar to those for the Nielsen-
Olesen vortex.

The 't Hooft monoyole is a soliton solution of the
field equations for a system consisting of an SU(2)

0.8

0.4
TABLE I. Some numerical values given by the formu-

las (2.41) and (2.42).

O. l

I

I.O
I

10.0 IOO.O mv
(GeV)

s =~a~v
(GeV)

FIG. 3. The energy per unit length of the Aux tube
in the Abelian model with m =1 (1 unit of flux) as a
function of the coupling parameter t" =A/e2. The quan-
tities B (0) and B(0)+C are plotted —see Eqs. (2.37) and
(2.38). mv =2e p/X.

0.1
1.0

10.0
100.0

0.610
0.975
1.626
2.53

1.28
1.01
0.78
0.63

0.40
1.01
2.47
6.30
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isovector gauge field &'„, a=1, 2, 3, and an iso-
vector Higgs field +'. En terms of the covariant
derivatives

y-0: X-ay,
F by,

(3.13)

(3.14)

gA' eA'
ex Bx

+eE,b
V

(8.1)

(3.2)

the Lagrangian is

'(F' )' -,'(D„@')'—

&+2(ya)2 Lx[(ya)2)2 (3.3)

't Hooft discovered that the field equation for
this model, i.e. ,

D„F'„-ec„,(D 4')4'=0 (3.4)

2@g+ ~2@a xya(@b)2 0 (3.5)

have a time-independent spherically symmetric
solution with the tensor form

with a and 5 unknown constants. To check (3.11)
and (3.12) substitute X = I+5X, F=1/x+6F in (8.9)
and (3.10) and linearize in 6X, 5E T.he resulting
linear equations have exponential-type solutions
for y -. Eliminating the exponentially growing
solutions, we are left with solutions in which 5F
and 6X approach zero exponentially as y ~. To
obtain (3.18) and (3.14) assume power series so-
lutions for (3.9) and (3.10) near r-0. The indicial
equations determine the variations near the origin.
Eliminating singular solutions in which X and F
vary as y ' near y-0, we find the linearly varying
solutions (3.13) and (3.14).

For a time-independent solution the energy is
the negative of the space integral of the Lagrange
density (3.3). Substituting (3.6) and (S.V) in this
formula, integrating by parts, and using (3.9) and

(S.10) to eliminate derivatives, we find for the en-
ergy the expression (in dimensionless variables)

A' = —e„,~—~E(r), p, = 1,2, 3; A; = 0, (3.6)

(S.V)

Substituting (3.6) and (3.7) in (3.4) and (3.5) one ob-
tains coupled nonlinear differential equations for
E(x) and X(r). Introducing dimensionless variables

1 2e2
m '=

m V

+tGf& —x'(~)1I. (S.15)

0.5

Numerical results for Eqs. (3.9)-(3.15), ob-
tained by the relaxation method discussed in the

(S.8) OA
6 = I00.0

G=-
e2

we find (dropping primes)

d2F 2dF 1 1 2 1
+— + F —— — F —— +—-X2 =0

dy2 y dy y y y2

(8.9)

0.3

4
OJ

O. I

d2X 2 dX.+———2 F —— x+Gx(1 —x') =o.
dy y dy

(3.10)

X

F 1 y,

(3.11)

(3.12)

The appropriate boundary conditions to be ap-
yUed in solving these equations are FIG. 4. The vector field I (r) as a function of radius

in the 't Hooft model of the magnetic monopole for sev-
eral values of the coupling parameter 6 =X/e2.

~2p2/g
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1.0—

0.8

positive and negative magnetic monopoles (~) a
distance 2b apart —see Fig. 7. First we remind
the reader of the vector potential for magnetic
monoyoles and diyoles in the absence of the Higgs
field. For a single monopole g located at the ori-
gin the vector potential (in spherical coordinates)

0.6 g sine
Aq ——,Ae-A„- o, (4.1)

OA

gives a Coulomb field

(4.2)

0.2

m„r

FIG. 5. The Higgs field X(x) as a function of radius in
the 't Hooft model of the magnetic monopole for several
values of the coupling parameter G ='A/e2. mv =e2/12/X.2- 22

The direction of the Dirac string is arbitrary. In
(4.1) it lies along the line cose = 1. For the dipole
of Fig. 7 we have

g sln8 ~ sln82
4g 2', (1 —cos&,) 2"2(1 —cos8,)

Appendix, are given in Figs. 4, 5, and 6. Figure
4 presents E(2) as a function of 2 for various val-
ues of the dimensionless coupling parameter G
= lI//e2. The corresponding results for the Higgs
field y(2") are given in Fig. 5. As for the vortex
solutions of Sec. II, for strong coupling, G»1,
X(2) differs from its asymptotic value only in a
narrow core. In Fig. 6 we give the energy of the
monopole as a function of G. It is a very slowly
varying function. Our numerical values are near-
ly, but not quite, in agreement with those obtained
by 't Hoofs' using a variational technique.

IV. DIPOLE CALCULATIONS

In this section we consider the solution of the
Eqs. (2.11) and (2.12) for a dipole consisting of

(4.3)

Here we have introduced elliytic coordinates

~, +x,
2b ' 2b

(4.4)

and have used the quantization condition (2.22), as-
suming that m = 1.

We now transform to elliptic coordinates in
(2.11) and (2.12). Take m = 1 in those equations

1.7

-gi

1.5
LIJ

1.4

I ~ &

1.2
+g I

I.O
O. I

I

I.O
I

10.0 IOO.O

~IG. 6. Energy of the monopole in the 't Hooft model
as a function of the coupling parameter G =&/e ~

= e2p2/X.

FIG. 7. Geometric quantities for the magnetic dipole.
Monopoles of strength (+g) are separated by a distance
2b.
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and use as dependent variable

A. =A-—.1
ep' (4.6)

(4.7)

Further, introducing dimensionless variables
',A,',

and dropping the primes we obtain in place of
(2.11) and (2.12)

n 8~i -')
s~ „Bn ('- ')-Bn' -(~ l)(l n)

(4.8)

$'-q' s). s$ sq sq
($' —1)—+—(1 —q') — = qA, ' —,'GR'(q —y') . (4.9)

~2)X/2

-1 (4.10)

The boundary conditions are now

There are two dimensionless parameters in these
gquations, R = m vb and G, with m v given by (2.28)
and 6 by (2.32).

A convenient way to incorporate the boundary
conditions on A, is to factor out the dipole form
(4.3). Thus we write (in dimensionless variables)

x- (f2 1)1/2 y
—(I q2)1/2

such that

(4.15)

specifies the manner of variation near the singular
line $ —1, particularly near the singular points
$ - 1, q -+ I, where the monopoles are located—
this was also necessary in the one-dimensional
case; see (2.17), (2.18), and (A19). It is also con-
venient to spread out these singular regions by a
change of variables

$ «oo ~ F($ q) 0

g(5, n) -1,
$-I: F(),q)-1,

C(&, n)-0.

(4.11)

(4.12)

(4.13)

(4.14)

p=o, (z

p=0, z

p=bgy,

=0 when y=1,
= b(1+x')'/' when y=0,
=b(1 —y')' ' when x=0

= &x(1 —y')'/' -when x- ~.

(4.16)

Actually, the relaxation method of solving the
differential equations will not converge unless one

In terms of these variables, Egs. (4.8) and (4.9)
become

2x(2+x'- y') sE, „s'E 1 4x' 1 —y' sE
+ 1) — —+ = x'+y'8' E,

Bx x x'+ y' Bx By' y x'+y y By

(x'+1) + 2x+——+ (1 —y'), + -2y+ ——= »F |t/ —aG& (x +y )(g —g ) ~
s'q 1 sp, s'q 1 sg x'+1 y'
8x x Bx ep p Qp x x +g

For x and y both small the leading terms in these equations are

xy(x'+y') ~+, —[y(x'+y')+4x'y] — + [-x(x'+y')+4x'] =0,eE 9F 2 2 gE 3»
8$ 8$ ex 8$'

x'y'(x'+y') +, +xy(x'+y') y—+x—=y4(,8 8
sx' sy' sx sy

(4.17)

(4.18)

(4.19)

(4.20)

and the solutions of these satisfying the boundary
conditions (4.13) and (4.14) are

x-0: E-1-f(y)x',

g -d(y)x,

(4.23)

(4.24)

x,y-0: F-1—cx'(x'+y'), (4.21)

y-ax(x'+y')', n = —1+-,'v 3, (4.22)

with c and c unknown constants. These are the
boundary conditions for both x and y small. For
only x small we have

with d(y) and f(y) unknown functions of y.
The constant c in (4.21), which must be evaluated

in the course of the numerical solution of the dif-
ferential equations, is closely related to the force
between the monopole- antimonopole pair. The
g component of the magnetic field is
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1 1 sl 1 q2

eb2 ()2 q2)l/2 ((2 1)1/2 srl L)2 2l2
(~ e

(4.25)

IO—

x
~ os-

Along the line 2l = 1, above the monopole (-g) (see
Fig. 7), this reduces to

2
,-- b, (] 1). (5, 1). (4.26) 'o I

Oe4
I

0.8

spell
2eb2 ($ 1)' ' (4.27)

we find for the field due to the monopole (+g) and
the surrounding Higgs field

Subtracting out the self-field of the monopole (-g), FIG. 8. The vector field E(x,y) as a function of x for
three values of y in the Abelian model of the dipole with
G =~/e'=2. o, R =my =4.o.

force = g(B —B—'"')

g2

( b), (1+16c), (4.34)

B2812
&8eb2-s$2

1

aeb' 3 ex4

, (1+16c),1
Seb'

in terms of the constant c in (4.21).
We can also use the formula for B„,

(1 212)1/2 g2+ 1I2

2 b2 (g2 2)2j2 (2 2

(4.28)

which, along the line )=1, below the monopole

(-g), yields

(4.28)

along the line g= 1. The limit of this expression
as'we approach the location $ = 1 of the monopole

(—g) is

where we have used the quantization condition
(2.23) with I= l. In (4.34), the force is given as
the sum of the Coulomb force between the mono-
poles and a correction due to the shielding effect
which produces the Qux tube. For large separa-
tions 2b the contribution involving c in (4.34)
should reduce to the energy per unit length calcu-
lated in Sec. II, Eq. (2.24) or Eq. (2.37).

In Figs. 8 and 9 we plot the fields E(x, y) and

P(x, y) obtained with G= 2 and R =4. The fields
are slowly varying in y; the relaxation method dis-
cussed in the Appendix would be imyractical if
this were not so. Figure 10 shows the magnetic
field (4.30) in the midplane of the dipole (y= 1) for
6=2 and various values of R. The formation of the
Qux tube discussed in Sec. II appears to be essen-
tially complete for R = 4, as evidenced by the fact
that B(0) approaches its asymptotic value and B(x)
approaches its yroyer shaye.

The quantity 8-B'"' is evaluated for G=2 at the

1 1 1+@2 gF
eb (1-e') 1 —e'sf, ,)'

Subtracting out the self- field,

1 1 9F
eb' 2(1+@)2 (1 —2I2) 8$

(4.31)
I.O—

0.5

1 1 1 82E
eb' 2(1+2l)' y' Sx'

we obtain again

(4.32)

0 0.4 0.8

sell

The force between the monoyoles is thus

(4.33) FIG. 9. The Higgs field g(x, y) as a function of x for
three values of y in the Abelian model of the dipole with
6 =X/e'=2. 0, R =m~0 =4.O.
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FIG. 12. B-B' along the g axis for G=A,/e =2.0 and
several values of R =mob.

0.5—
'0

FIG. 10. The magnetic field B(p) in the midplane of
the dipole, y =1, for G =X/e2=2. 0 and various values of
R=nz~b. (a) B(p)/B(0) as a function of p; (b) B(0) as a
function of R. The value of B(0) for the infinite vortex
of Sec. II is shown as a dashed line.

1.0—

NW (B(0)+C)/2

0.5—
0

R=mvb

FIG. 11. B-B"' at the location of the monopole (g=y
= 0) for G =A./e2=2. 0 as a function of R =m ~5. Shown as
dashed lines are [B(0)+C]/2 from Sec. II, and P+e/R2
The values of o and P are chosen so that the two curves
coincide at R = 0.25 (not plotted) and R =4.0.

location of the monopole (-g), Eq. (4.29), and is
displayed in Fig. 11 as a function of R, the sepa-
ration of the monopoles in dimensionless units.
The force between the monopoles is proportional
(Eq. 4.34) to the quantity plotted, and the result
from Sec. ll for this force (valid in the limit R -~)
is shown as a dashed line. The calculated force

is very near its asymptotic value for R ~ 2. Also
plotted is a curve of the form P + o./R', which is
consistent with the commonly used phenomenologi-
cal potential Eq. (2.40). The force between the
dipoles for G= 2 is somewhat different from this
form in the intermediate region R =- 1. A different
choice of G would change the shape of this curve;
there probably exists some value of G which re-
sults in a potential almost identical to the phenom-
enological form (2.40).

The magnetic field B—B'"' was calculated along
the z axis, Eq. (4.16), using (4.28) for z/b ~ 1 and
(4.32) for z/5 ~ 1, and the results are shown in
Fig. 12 for three values of R. We remind the read-
er that only the self-field of the monopole (-g) at
z/b =+ 1 has been subtracted out; the quantity
B B'"' is singular at z/b= —1. There were some
numerical difficulties encountered in the evalua-
tion of d'E/dx'I, in (4.32) which caused scatter
on the 3-5% level in the values of & —f3'" cal-
culated for z/b —1; the curve drawn has been
smoothed by eye. However, we are confident that
such features as the bump near z/b = 1 are not
spurious, although the width and height of this
structure are not well determined. A completely
satisfactory solution to this problem (as well as a
resolution of the difficulty discussed in the Appen-
dix) would probably involve the use of a signifi-
cantly more sophisticated numerical technique. "
However, the physical interest of such fine details
of the particular model discussed here did not
seem sufficient to warrant the extra effort at this
time.
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&s= Ls+x6&s+x+ K&+x ~

L~„=-(B~+C~Lq) 'Dq,

K~+, =-(8 &+ C&L&) '(Q &+ C&K&) .
(A18)

These recursion relations are used to calculate
and store L& and E& for j=3,4, . . . , ¹ However,
at this point we know that 5Q„=0, and thus that
(A17), (A9), and (A4) can be used to compute 5Q&,

Q;, and Qz for j =N —1, N —2, . . . , 2. This should
represent an improved solution, in the sense that
Q~ = 0 should be more nearly satisfied for the new

Q& than it was for Q&. If all the values of Q& are
not satisfactorily small, P& can be used as a start-
ing point for another relaxation.

If it converges at all, this iterative method usu-
ally converges extremely rapidly, requiring only a
few iterations even if the initial guess is very bad.
However, the singular points of the equation must
be treated carefully. If x~ = 0 is such a point, then
both singular and nonsingular solutions to Q = 0 will
exist near x=0 [e.g. Q(x)~x' ]. The scheme out-
lined above will then fail to converge; a few itera-
tions will yield a Q(x) which is very large near
x = 0, jumping discontinuously to the boundary con-
dition Pz at the point x = 0. One can prevent the
singular solution from creeping in by constraining
the first three points to vary like P(x) ~x, re-
placing L, and K, in (416) by

(AI6)

and the M'+M components of L, and K, can be com-
puted and saved for future reference. Similarly,
5Q, can be expressed in terms of 5cf&„and, in gen-
eral,

E = 1 —cx'(x'+ y') (A20)

is a solution to fourth order. We introduce a new
parameter P(x, y} in the difference formula for the
first derivative,

The Henyey relaxation method can be extended to
solve a partial differential equation in x and y
simply by treating P(x~, y, ) as distinct functions of
x for each y;. If L grid points are used in the y
direction, then the matrices and vectors in (A10)
and (A17) are dimensioned M x L; it is clear that
this method is impractical if rapid variations in y
force one to choose L large. In Sec. IV the singular
part of A has been factored out, so that E and P
are slowly varying in y.

It is crucial in Sec. IV that the linearized equa-
tions (4.19}and (4.20) are solved to yield (4.21)
and (4.22). These expressions must be used in
place of (A19) for the region where both x and y
are small. Slightly different values of a and c will
result for each value of y,-, but these may be aver-
aged and E and P recomputed in this region.

However, careful attention to the above points
does not ensure that a satisfactory solution to the
partial differential equation will be found. The dif-
ference equations resulting from (A4), (A5), and
(A6) may not limit smoothly into the differential
equation as &„,&„-O." The equations of Sec. IV,
(4.17) and (4.18), experience this problem. For
example, the small-argument solution for E,
(4.21), satisfies the differential equation (4.17) to
fourth order in x and y. Conversion of (4.17) to a
difference equation using (A5) and (A6) spoils this
property; the difference equation fails to reproduce
the x derivatives. A better difference equation may
be derived for which

K3=0 .

0(&) —4 (o)
0(») - 4 (0) ' (A19)

1
E„„(x~)=-, (E~„—2Fq+F~, ),

E„(x,) -=~ [P(Fg„-F~) +(I P)(Fg F~-,)], -.=1
More points can be constrained if desired, but
three are usually enough.

Another difficulty occurs if Q(x) ~x with o. ( l.
Here the relaxations converge, but to an answer
which does not satisfy Q,. = 0 very well near x= 0.
This happens because the difference equations are
not accurate near a singularity of dQ/dx. The
problem can be avoided by making the substitution
u=x~, where P —n, so that P(u) ~u ~~.

and, writing (4.17) as

F„„+g(x,y)F„=k(x, y),
require that

(F.'. F,)+C(x,s)(F.' --E.) = o

(A22)

(A28)

be satisfied to fourth order. This determines P,

(ED - E) g(+x, y)((1/4 )[E(x,y) F(x —A„,y)] E„]- —
a(x, X)E,&. (A25)

@4~ @2+5X2 2@ax 18X3 11y~x2+ 30X4
2F +2K +10X +22YX +60X
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APPENDIX 0 = Q, + B,5$~+ C~5@~ +D~f)$~„. (A10)

The relaxation method of Henyey et al. (Ref. 15)
is a rather general iterative scheme by which one
can solve systems of ordinary differential equa-
tions with boundary conditions specified at both
end points. (An extension to partial differential
equations will be mentioned presently. )

Given a system of M differential equations such
as

~~kj 6yk

J 6yk (A11)

The M x M matrices B,-, C, , and D& are given by

Q =f(x, P), +g(x, Q) ~ + k(x, Q)
d'Q d)II)

=0

one wishes to impose boundary conditions

0(xi ) 4L ) 4 (xU) 4U

In these expressions Q(x), Q(x), Qz, )t)~, and

h(x, Q) are column vectors

(Al)

(A2)
d2A. 1 dA„,+ ——„+y(x,A, 0))

(A12)

Here and throughout the lower index refers to the
point x,. and the upper indices refer to the space of
functions Q', . . . , Q". As a simple exa'nple, if

)II)'(x)

0'(x)
, etc. ,

then

,+ ——+g(x, A, g)
d'g 1 dg

&g„—~~+Aq, + ~ (.A.~„-A~,)+ a'fq

0 (x)

and f and g may be M && M matrices.
The equation Q = 0 can be converted into a set of

difference equations,

Qg=
'4 i —26+ 6 i+

2 k (&g., —6-i)+ &'Z~

Q~=Q(x), Q)

=f(x;, P~), +g(x~, P~) — + h(x~, P~)

(A13)

(A4)

using approximations

dk)t) 1
d—k = ~a (4'g+~ —24'+ Ag )),x xl

(A6)

d 1—
2~ (0;., —4g,), (A6)

with

x)=(j-1)&+xi,, j=1,N
p,.= p(x)), j=1,N .

(AV)

(A6)

Starting with an initial guess for the solution to
(A6), Q=))))(x), one can improve the extent to which
the M XN equations (A4) are satisfied by using
Newton's method,

P(x~) —))))(x,) = P(x,)+ 5&]&(x~), (A9)

6/~=0, 6$N=O . (A14)

But the j= 2 part of (A10) can now be solved for
6Q, in terms of 6Q„

where a factor of &' has been absorbed into Q, C,
B, and D.

Having disposed of these preliminaries, a de-
scription of the Henyey relaxation method is now
straightforward. Since the initial guess, &f&(x), is
taken to satisfy the boundary conditions at x~ and
x~, we already know that

where f)P& —= 5$(x&) is determined by f)pk=f. ,5/k+K, , (A16)
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with

The difference formulas (A21) and (A22) are tail-
ored for use in (4.17), and are greatly superior
to (A5) and (A6).

This technique is not as successful when applied
to the g equation (4.18). Singularities appear in the

analog of (A25) corresponding to zeros of g(y) and

C, and the difference formulas are not improved.
As a result, derivatives of P are not well deter-
mined near the point x = y = 0. Fortunately, E and
its derivatives are physically more interesting
than derivatives of P, and the E equation (4.17) de-
couples from (4.18) in the region where the prob-
lem occurs. A more satisfactory treatment of this
problem would almost certainly have little or no
effect on the results presented in Sec. IV.
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